Single molecule diode has been created from DNA - Future uses in nanoscale circuits

04/04/2016 - 15:43


The world's smallest diode, the size of a single molecule, has been developed collaboratively by U.S. and Israeli researchers from the University of Georgia and Ben-Gurion University of the Negev (BGU).

Their study will be published online in Nature Chemistry on April 4, 2016.

"Creating and characterizing the world's smallest diode is a significant milestone in the development of molecular electronic devices," explains Dr. Yoni Dubi, a researcher in the BGU Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology.

READ MORE ON PHYS.ORG

Ref: Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nature Chemistry (4 April 2016) | DOI: 10.1038/nchem.2480

ABSTRACT

The predictability, diversity and programmability of DNA make it a leading candidate for the design of functional electronic devices that use single molecules, yet its electron transport properties have not been fully elucidated. This is primarily because of a poor understanding of how the structure of DNA determines its electron transport. Here, we demonstrate a DNA-based molecular rectifier constructed by site-specific intercalation of small molecules (coralyne) into a custom-designed 11-base-pair DNA duplex. Measured current–voltage curves of the DNA–coralyne molecular junction show unexpectedly large rectification with a rectification ratio of about 15 at 1.1 V, a counter-intuitive finding considering the seemingly symmetrical molecular structure of the junction. A non-equilibrium Green's function-based model—parameterized by density functional theory calculations—revealed that the coralyne-induced spatial asymmetry in the electron state distribution caused the observed rectification. This inherent asymmetry leads to changes in the coupling of the molecular HOMO−1 level to the electrodes when an external voltage is applied, resulting in an asymmetric change in transmission.