A team of researchers with The University of Tokyo and Japan Synchrotron Radiation Research Institute has created a type of glass that is stronger than many metals. In their paper published in the journal Scientific Reports, the researchers describe how they overcame one of the major hurdles in creating glass imbued with extra amounts of an oxide of aluminum, by using what they call aerodynamic levitation.
Glass that does not break when dropped or when struck by another object would be useful in a wide variety of applications, from automobile windows, to skyscrapers to smartphones and tablets.
Ref: High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing. Scientific Reports (15 October 2015) | DOI:10.1038/srep15233 (Open Access)
ABSTRACT
Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5.