New tissue engineering technique can grow a 'living hip' replacement from the patient's stem cells

07/19/2016 - 17:34

Jim Dryden | Image: Guilak Laboratory


With a goal of treating worn, arthritic hips without extensive surgery to replace them, scientists have programmed stem cells to grow new cartilage on a 3-D template shaped like the ball of a hip joint. What’s more, using gene therapy, they have activated the new cartilage to release anti-inflammatory molecules to fend off a return of arthritis.

The technique, demonstrated in a collaborative effort between Washington University School of Medicine in St. Louis and Cytex Therapeutics Inc. in Durham, N.C., is described July 18 in Proceedings of the National Academy of Sciences.

READ MORE ON WASHINGTON UNIVERSITY SCHOOL OF MEDICINE IN ST. LOUIS

Ref: Anatomically shaped tissue-engineered cartilage with tunable and inducible anti-cytokine delivery for biological joint resurfacing. Proceedings of the National Academy of Sciences (18 July 2016) | DOI: 10.1073/pnas.1601639113

ABSTRACT

Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra–expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra–expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function.