A research team at Umeå University in Sweden has showed, for the first time, that a very efficient vertical charge transport in semiconducting polymers is possible by controlled chain and crystallite orientation. These pioneering results, which enhance charge transport in polymers by more than 1,000 times, have implications for organic opto-electronic devices and were recently published in the journal Advanced Materials.
Conjugated semiconducting polymers (plastic) possess exceptional optical and electronic properties, which make them highly attractive in the production of organic opto-electronic devices, such as for instance photovoltaic solar cells (OPV), light emitting diodes (OLED) and lasers.
Ref: Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment. Advanced Materials (27 January 2016) | DOI: 10.1002/adma.201503422
ABSTRACT
A method to produce highly efficient and long range vertical charge transport is demonstrated in an undoped polythiophene thin film, with average mobilities above 3.1 cm2 V−1 s−1. These record high mobilities are achieved by controlled orientation of the polymer crystallites enabling the most efficient and fastest charge transport along the chain backbones and across multiple chains. The significant increase in mobility shown here may present a new route to producing faster and more efficient optoelectronic devices based on organic materials.