VIDEO: Researchers can now direct stem cell development in days rather than months

07/21/2016 - 15:35

Krista Conger


Researchers at the Stanford University School of Medicine have mapped out the sets of biological and chemical signals necessary to quickly and efficiently direct human embryonic stem cells to become pure populations of any of 12 cell types, including bone, heart muscle and cartilage.

The ability to make pure populations of these cells within days rather than the weeks or months previously required is a key step toward clinically useful regenerative medicine -- potentially allowing researchers to generate new beating heart cells to repair damage after a heart attack or to create cartilage or bone to reinvigorate creaky joints or heal from trauma.

READ MORE ON STANFORD MEDICINE | NEWS CENTER

Ref: Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell (14 July 2016) | DOI: 10.1016/j.cell.2016.06.011

SUMMARY

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%–99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes.