Smartphone lab can detect cancer just as well as standard lab technology

10/20/2016 - 02:55

Erik Gomez

Washington State University researchers have developed a low-cost, portable laboratory on a smartphone that can analyze several samples at once to catch a cancer biomarker, producing lab quality results.

The research team, led by Lei Li, assistant professor in the School of Mechanical and Materials Engineering, recently published the work in the journal Biosensors and Bioelectronics.

At a time when patients and medical professionals expect always faster results, researchers are trying to translate biodetection technologies used in laboratories to the field and clinic, so patients can get nearly instant diagnoses in a physician’s office, an ambulance or the emergency room.


Ref: A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosensors and Bioelectronics (2017) | DOI: 10.1016/j.bios.2016.09.021


Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400 nm to 700 nm with the high resolution of 0.2521 nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function.