Revolutionary concept to material design using genetic algorithms

11/27/2013 - 00:00

Material design usually follows what is known as the Edisonian method, a traditional process characterized by trial-and-error discovery rather than a systematic theoretical approach. While this may be somewhat inaccurate – Edison made use of available theories and resorted to trial and error only when no adequate theory existed – a better alternative is an a priori approach in which desired properties are defined and corresponding structures designed. 

To that end, scientists at Columbia University – Department of Chemical Engineering and Brookhaven National Laboratory (BNL) have recently created a design approach in which colloids grafted with single-stranded DNA self-assemble into desired structures. The researchers state that their methodology can be easily generalized, is fast and highly selective, accurately reproduces the parameters relevant to four currently realized crystals but also – surprisingly – elucidates four currently unobserved structures. While the scientists acknowledge that these structures need to be experimentally validated, they are confident that their methodology has broad potential applications.