The instructions for building all of the body’s proteins are contained in a person’s DNA, a string of chemicals that, if unwound and strung end to end, would form a sentence 3 billion letters long. Each person’s sentence is unique, so learning how to read gene sequences as quickly and inexpensively as possible could pave the way to countless personalized medical applications.
“The advantage,” Balan said, “over the ionic method is that the current in the graphene ribbon is a thousand times higher. That means we can measure a thousand times faster. We wouldn’t need to slow down the DNA to make an accurate measurement of each base.”