CRISPR is coming to cure sickle cell disease in humans

10/17/2016 - 16:01

Sharon Begley | @sxbegle | Image: Ed Uthman


Scientists have taken an important step toward using CRISPR-Cas9 genome-editing to cure sickle cell disease, repairing the disease-causing mutation in blood-forming cells taken from patients. Some edited cells, injected into lab mice, both survived in the animals’ bone marrow and turned into red blood cells — a hint that CRISPR’d cells would  would produce healthy hemoglobin in people. This is the first such experiment to get levels of healthy hemoglobin that might be high enough to cure patients.

READ MORE ON STAT | IN THE LAB

Ref: Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine (12 October 2016) | DOI: 10.1126/scitranslmed.aaf9336

ABSTRACT

Genetic diseases of blood cells are prime candidates for treatment through ex vivo gene editing of CD34+ hematopoietic stem/progenitor cells (HSPCs), and a variety of technologies have been proposed to treat these disorders. Sickle cell disease (SCD) is a recessive genetic disorder caused by a single-nucleotide polymorphism in the β-globin gene (HBB). Sickle hemoglobin damages erythrocytes, causing vasoocclusion, severe pain, progressive organ damage, and premature death. We optimize design and delivery parameters of a ribonucleoprotein (RNP) complex comprising Cas9 protein and unmodified single guide RNA, together with a single-stranded DNA oligonucleotide donor (ssODN), to enable efficient replacement of the SCD mutation in human HSPCs. Corrected HSPCs from SCD patients produced less sickle hemoglobin RNA and protein and correspondingly increased wild-type hemoglobin when differentiated into erythroblasts. When engrafted into immunocompromised mice, ex vivo treated human HSPCs maintain SCD gene edits throughout 16 weeks at a level likely to have clinical benefit. These results demonstrate that an accessible approach combining Cas9 RNP with an ssODN can mediate efficient HSPC genome editing, enables investigator-led exploration of gene editing reagents in primary hematopoietic stem cells, and suggests a path toward the development of new gene editing treatments for SCD and other hematopoietic diseases.