Significant issue in CRISPR-Cas9 overcome - Less errors and increased specificity for future genetic edits

12/01/2015 - 20:19

Paul Goldsmith


Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on “off-target” editing errors. The refined technique addresses one of the major technical issues in the use of genome editing. The CRISPR-Cas9 system works by making a precisely targeted modification in a cell's DNA.

READ MORE ON BROAD INSTITUTE

Ref: Rationally Engineered Cas9 Nucleases with Improved Specificity. Science (1 December 2015) | DOI: 10.1126/science.aad5227

ABSTRACT

The RNA-guided endonuclease Cas9 is a versatile genome editing tool with a broad range of applications from therapeutics to functional annotation of genes. Cas9 creates double-strand breaks (DSBs) at targeted genomic loci complementary to a short RNA guide. However, Cas9 can cleave off-target sites that are not fully complementary to the guide, which poses a major challenge for genome editing. Here, we use structure-guided protein engineering to improve the specificity of Streptococcus pyogenes Cas9 (SpCas9). Using targeted deep sequencing and unbiased whole-genome off-target analysis to assess Cas9-mediated DNA cleavage in human cells, we demonstrate that “enhanced specificity” SpCas9 (eSpCas9) variants reduce off-target effects and maintain robust on-target cleavage. Thus, eSpCas9 could be broadly useful for genome editing applications requiring a high level of specificity.