Researchers augment genetics of chicken to grow a "dinosaur-like lower leg"

03/11/2016 - 15:38


Anyone who has eaten roasted chicken can account for the presence of a long, spine-like bone in the drumstick. This is actually the fibula, one of the two long bones of the lower leg (the outer one). In dinosaurs, the ancestors of birds, this bone is tube-shaped and reaches all the way down to the ankle. However, in the evolution from dinosaurs to birds, it lost its lower end, and no longer connects to the ankle, being shorter than the other bone in the lower leg, the tibia. Scientists noted long ago that bird embryos first develop a tubular, dinosaur-like fibula.

READ MORE ON PHYS.ORG

Ref: Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution (4 March 2016) | DOI: 10.1111/evo.12882 | PDF (Open Access)

ABSTRACT

Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity.