Plasmonic antennas for wireless communication at the nanoscale advance miniaturization possibilities

08/26/2016 - 02:10


The pursuit of next-generation technologies places a premium on producing increased speed and efficiency with components built at scales small enough to function on a computer chip.

One of the barriers to advances in "on-chip" communications is the size of the electromagnetic waves at radio and microwave frequencies, which form the backbone of modern wireless technology. The relatively large waves handcuff further miniaturization.

READ MORE ON PHYS.ORG

Ref: Wireless communication system via nanoscale plasmonic antennas. Scientific Reports (24 August 2016) | DOI: 10.1038/srep31710 | PDF (Open Access)

ABSTRACT

Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology.